30 research outputs found

    Study of the forbidden oxygen lines in a dozen comets observed at the VLT (ESO)

    Full text link
    The forbidden lines are difficult to analyse because their detection requires high spectral and spatial resolutions. Their analysis is however interesting because it allows the determination of the spatial distribution and the production rate of the parent molecules, supposedly H2O which doesn't have any feature in the optical range. But as shown by Cochran [2] [3], some issues remain about the nature of the parents of the oxygen atoms. Moreover the width of the green line was found larger than that of the red lines. One of the goals of this study is to determine the parent species that photo-dissociate to produce oxygen atoms and see how this process depends on the heliocentric distance. We present here the results of the analysis of a homogeneous set of high quality spectra of 13 different comets observed with UVES at the ESO VLT since 2002 [4] [5]

    Study of the forbidden oxygen lines in comets at different heliocentric and nucleocentric distances

    Full text link
    Oxygen is an important element in the chemistry of the Solar System objects given its abundance and its presence in many molecules including H2O, which constitutes 80% of cometary ices. The analysis of oxygen atoms in comets can provide information not only on the comets themselves but also on our Solar System. These atoms have been analyzed using the three forbidden oxygen lines [OI] observed in emission in the optical region at 5577 Å (the green line), 6300 Å and 6364 Å (the red lines) [1]. These lines are difficult to analyze because their detection requires high spectral and spatial resolutions. The oxygen analysis is interesting because it allows the determination of its parent molecules

    High-Dispersion Spectroscopic Observations of Comet C/2012 S1 (ISON) with the Subaru Telescope

    Full text link
    Comet C/2012 S1 (ISON) was one of the Oort cloud comets and dynamically new. This comet was broken at its perihelion passage on UT 2013 November 28.1 (at Rh ~ 17 solar radius). We observed the comet C/2012 S1 (ISON) on UT 2013 November 15 with the High Dispersion Spectrograph (HDS) mounted on the Subaru Telescope atop Mauna Kea, Hawaii. Its heliocentric and geocentric distances were 0.601 and 0.898 AU, respectively. We selected the slit size of 0”.5 x 9”.0 on the sky to achieve the spectral resolution of R = 72,000 from 550 to 830 nm. The total exposure time of comet C/2012 S1 (ISON) was 1200 seconds. We detected many emission lines caused from radicals (e.g., CN, C2, NH2), ions (H2O+), atoms ([OI] and Na I) and also many unidentified lines in the spectra. We report the (1) the ortho-to-para abundance ratios (OPRs) of water and ammonia estimated from the high-dispersion spectra of H2O+ and NH2, (2) the green-to-red line ratio of forbidden oxygen emissions, (3) the isotopic ratios of C2 (the carbon isotopic ratio from Swan band) and CN (the carbon and nitrogen isotopic ratios from red band), (4) the sodium-to-continuum ratio of comet C/2012 S1 (ISON). </HTML

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Study of dissociation products of H2O in a sample of comets of various origins.

    Full text link
    Les comètes sont connues pour contenir de grandes quantités d’eau et des molécules organiques en tout genre. Formées lors de la naissance de notre Système Solaire, il y a 4.6 milliards d’années, elles n’ont ensuite pas beaucoup évolué, ce qui les rend témoins potentiels des processus physico-chimiques présents à cette période. L’étude des comètes permet donc d’en apprendre davantage sur leur propre nature encore potentiellement énigmatique, mais également sur notre Système Solaire lui-même, et tout particulièrement sa genèse. La mission européenne Rosetta, en orbite autour de la comète 67P/Churyumov-Gerasimenko témoigne de l’intérêt porté à ces petits corps gelés du Système Solaire. Cette mission est unique puisqu’elle va permettre pour la première fois de mesurer la composition chimique précise d’un noyau cométaire. Ce type de mission est par contre très coûteux et ne concerne qu’une comète en particulier. Avec des télescopes au sol, il est possible d’étudier un nombre plus important de comètes. Certes, le noyau n’est dans ce cas pas directement atteignable, mais la spectroscopie permet d’analyser l’atmosphère de la comète. Formée par la sublimation des glaces du noyau et la dissociation des molécules qui s’en échappent, la coma contient de nombreuses informations nous permettant d’accroître nos connaissances sur la composition chimique du noyau. L’objectif de cette thèse est l’étude des molécules liées à l’eau dans les comètes. Les glaces cométaires renferment en effet 80% d’eau. Etudier cette molécule est donc crucial pour définir la nature des comètes et comprendre les conditions physiques et chimiques régnant dans la coma. Toutefois, H2O n’est pas détectable dans le domaine de longueur d’onde visible. Sur base d’un ensemble de données spectroscopiques visibles acquises depuis le sol, nous proposons dans cette thèse l’analyse de deux produits de dissociation de la molécule d’eau observables dans l’atmosphère de la comète, l’oxygène atomique et le radical OH. Le premier volet de ce travail se concentre sur les trois raies interdites de l’oxygène localisées à 5577.339 Å pour la raie verte (O(1S)) et à 6300.304 Å et 6363.776 Å (O(1D)) pour les raies du doublet rouge en vue de déterminer la ou les molécules parentes à l’origine de ces atomes. Dans cette optique, nous avons créé un spectre synthétique de la molécule de C2 afin de décontaminer la raie verte des raies dues au C2. Ensuite, nous avons mesuré les rapports d’intensité et les largeurs intrinsèques des trois raies d’oxygène pour des comètes situées à différentes distances héliocentriques. La comparaison du rapport de l’intensité de la raie verte sur la somme des intensités des raies rouges (rapport G/R) avec les taux d’excitation fournis par la théorie montre que H2O est la molécule parente principale des atomes d’oxygène lorsque la comète est observée à r ∼ 1 ua. Par contre, lorsque la comète est loin du Soleil (>2.5 ua), les molécules de CO2 contribuent également à la production d’oxygène. La mesure des largeurs intrinsèques des raies montre que la raie verte est plus large que les raies rouges alors que la théorie prédit l’inverse. Découle de cette observation que la raie verte pourrait principalement provenir de la photodissociation du CO2 alors que les raies rouges seraient uniquement formées via H2O. En étudiant les raies d’oxygène à différentes distances du noyau cométaire, nous réalisons que la molécule parente de l’oxygène varie : le CO2 est le contributeur premier des atomes d’oxygène en deçà de ∼1000 km du noyau et laisse ensuite la place à H2O. Qui plus est, nous notons l’importance du quenching collisionnel produit par H2O dans la coma interne qui joue un rôle significatif dans la perte des atomes de O(1S) et O(1D). Un modèle d’émission est réalisé pour reproduire nos données observationnelles. En se penchant sur le comportement adopté par les raies d’oxygène près du noyau et sur l’ajustement fourni par le modèle, une estimation de l’abondance relative du CO2 est déterminée. Des lors, cette thèse présente une nouvelle méthode pour déterminer l’abon- dance CO2/H2O dans les comètes à partir de données obtenues depuis le sol alors qu’une mesure directe de la molécule de CO2 n’est jusqu’à ce jour possible que depuis l’Espace. La seconde partie de notre travail porte sur l’analyse des rapports isotopiques 16O/18O et D/H à partir des isotopes du radical OH. La connaissance des rapports isotopiques dans des comètes d’origines variées est importante car cela peut nous renseigner sur les conditions physiques et chimiques existantes lorsque la comète s’est formée. De plus, la mesure du D/H s’inscrit dans le débat actuel de l’origine des océans terrestres. Dans ce contexte, des spectres synthétiques de 16OH, 18OH et OD sont créés sur base d’un modèle de fluorescence. Le rapport 16O/18O est déduit pour la première fois par ce modèle pour la comète C/2012 F6 (Lemmon) et il établit le point de départ d’une longue série de mesures portées sur des comètes brillantes à venir

    Ortho-to-para abundance ratios of NH2in 26 comets: implications for the real meaning of OPRs

    Full text link
    peer reviewedAbundance ratios of nuclear-spin isomers for cometary molecules having identical protons, such as water and ammonia, have been measured and discussed from the viewpoint that they are primordial characters in comet. In the case of ammonia, its ortho-to-para abundance ratio (OPR) is usually estimated from OPRs of NH2 because of difficulty in measuring OPR of ammonia directly. We report our survey for OPRs of NH2 in 26 comets. A weighted mean of ammonia OPRs for the comets is 1.12 ± 0.01 and no significant difference is found between the Oort Cloud comets and the Jupiter-family comets. These values correspond to ∼30 K as nuclear-spin temperatures. The OPRs of ammonia in comets probably reflect the physicochemical conditions in coma, rather than the conditions for the molecular formation or condensation in the pre-solar molecular cloud/the solar nebula, based on comparison of OPRs (and nuclear-spin temperatures) of ammonia with those of water, 14N/15N ratios in ammonia, and D/H ratios in water. The OPRs could be reset to a nuclear-spin weights ratio in solid phase and modified by interactions with protonated ions like H3O+, water clusters (H2O)n, ice grains, and paramagnetic impurities (such as O2 molecules and grains) in the inner coma gas. Relationship between the OPRs of ammonia and water is a clue to understanding the real meaning of the OPRs

    Survey for Ortho-to-Para Abundance Ratios (OPRs) of NH2 in Comets: Revisit to the Meaning of OPRs of Cometary Volatiles

    Full text link
    Since molecules having identical protons can be classified into nuclear-spin isomers (e.g., ortho-H[SUB]2[/SUB]O and para-H[SUB]2[/SUB]O for water) and their inter-conversions by radiative and non-destructive collisional processes are believed to be very slow, the ortho-to-para abundance ratios (OPRs) of cometary volatiles such as H[SUB]2[/SUB]O, NH[SUB]3[/SUB] and CH[SUB]4[/SUB] in coma have been considered as primordial characters of cometary molecules [1]. Those ratios are usually interpreted as nuclear-spin temperatures although the real meaning of OPRs is in strong debate. Recent progress in laboratory studies about nuclear-spin conversion in gas- and solid-phases [2,3] revealed short-time nuclear-spin conversions for water, and we have to reconsider the interpretation for observed OPRs of cometary volatiles. We have already performed the survey for OPRs of NH[SUB]2[/SUB] in more than 20 comets by large aperture telescopes with high-resolution spectrographs (UVES/VLT, HDS/Subaru, etc.) in the optical wavelength region [4]. The observed OPRs of ammonia estimated from OPRs of NH[SUB]2[/SUB], cluster around ~1.1 (cf. 1.0 as a high-temperature limit), indicative of ~30 K as nuclear-spin temperatures. We present our latest results for OPRs of cometary NH[SUB]2[/SUB] and discuss about the real meaning of OPRs of cometary ammonia, in relation to OPRs of water in cometary coma. Chemical processes in the inner coma may play an important role to achieve un-equilibrated OPRs of cometary volatiles in coma.This work was financially supported by MEXT Supported Program for the Strategic Research Foundation at Private Universities, 2014–2018 (No. S1411028) (HK) and by Graint-in-Aid for JSPS Fellows, 15J10864 (YS).References:[1] Mumma & Charnley, 2011, Annu. Rev. Astro. Astrophys. 49, 471.[2] Hama & Watanabe, 2013, Chem. Rev. 113, 8783.[3] Hama et al., 2008, Science 351, 6268.[4] Shinnaka et al., 2011, ApJ 729, 81
    corecore